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Abstract:

- This paper defines the Difference of Low-Pass (DOLP) transform and describes a fast algorithm for
its computation. The DOLP is a reversible transform which converts an image into a set of band-pass
images. A DOLP fransform is shown to require O(Na) multiplies and produce O(N Log(N)) samples
from an N sample image. When Gaussian low-pass filters are used, the result is a set of images which
have been convolved with difference of Gaussian (DOG) filters from an exponential set of sizes.

A fast computation technique based on 'resampling" is described and shown to reduce the DOLP
transform complexity to O(N Log(N)) nultiplies and O(N) storage locations. A second technique,
"cascaded convolution with expansiono, is then defined and also shown to reduce the computational
cost to O(N Log(N)) multiplies. Combining these two techniques yields an algorithm for a DOLP
transform that requires O(N) storage cells and requires O(N) multiplies.

The DOLP transform provides a basis for a structural description of gray-scale shape. Descriptions
of shape in this representation may be matched efficiently to descriptions of shape from other images
to determine motion or stereo correspondence. Such descriptions may also be matched independent
of their size or image plane orientation. ,_
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*? 1 Introduction

'he l)ifference of Low-Pass (DOI.P) Transform is a reversible transform which converts an image into a
set of band-pass images. Thesc band-pass images comprise a three space (the l)OIP space) which serves as
the basis for an efficient technique for matching descriptions of shape [10].

The band-pass images which compose the l)OLP space arc each equivalent to a convolution of the image
with a band-pass filtcr, bk. Each band-pass filter is formed by a difference of two size-scalcd copies of a
low-pass filter, g-, and gk.

bk= 1g/ - 9k

Each low-pass filter gk is a copy of the low pass filter gk-I scaled larger in size by a scale factor.

In the following sections we motivate the need for fast computation of a multi-resolution description of
image signals, and briefly describe a representation based the DOLP transform. This representation is the
topic of a companion paper [111. We then introduce two techniques for speeding the computation of a DOLP
transform. A fast algorithm based on these techniques is decribed below. This algorithm reduces the
complexity of computing a DOLP transform from O(N 2)' to O(N) multiplies and additions, where N is the
number of sample points in an image.

1.1 Motivation:The Structural Description of Images

Interpreting the patterns in an image requires some form of matching. If the interpretation is restricted to
two-dimensional patterns, this matching is between descriptions of shapes in the image and object models. If
the interpretation is in terms of three-dimensional objects then techniques for matching among stereo images
or motion sequences may be rcquirt, . in either case, the matching problem is simplified if descriptions are
compared at multiple, resolutions.

Detecting peaks and ridges in a DOLP Transform provides a structural description of the gray-scale shapes
in an image. Matching the structural descriptions of shapes in images is an efficient approach to determining
the three-dimensional structure of objects from stereo pairs of images and from motion sequences of images
(131. Matching to a prototype description of an object class is also useful for recognizing shapes in both
two-dimensional image domains and three-dimensional scene domains [3]. The motivation for computing a
structural description is to spend a fixed computational cost to transform the information in each image into a
representation in which searching and matching are more efficient. In many cases the computation involved
in constructing a structural description is regular and local, making the computation amenable to fast
implementauon in special purpose hardware.

Several researchers have shown that the efficiency of searching and matching processes can be dramatically
improved by performing the search with a multi-resolution hierarchy. Moravec [151 has dcmonstratqd a
multi-resolution correspondence matching algorithm for object location in stereo images. Marr and Poggio
[131 have demonstrated correspondence matching using edges detected by a difference of Gaussian filters at

1llhe symbol O(.) is pronounced "order or'. A function. g(n) is said to be or O(f(n)) if there exists a constant, c, such that g(n) 5 cfn)
for all but some finite (possible empty) set of nonnegative values for n (2].



four resolution. Roscnfeld and Vandcrbrug [211 have described a two stage hierarchical template matching
*algorithm. Hall has reported using a multi-resolution pyramid to dramatically spcd up correlation of aerial

images [121. It should also be noted that Burt has recently reported using cascaded convolution of "Gaussian-
Like" kernels to construct a form of DOLP transform [4].

There is also experimental evidence that the visual systems of humans and other mammals separate images
into a set of "spatial frequency" channels as a first encoding of visual information. This "multi-channel
theory" is based on measurements of the adaption of the threshold sensitivity to vertical sinusoidal functions
of various spatial frequencics 17], [22J. Adaption to a sinusoid of a particular frequency affTcts only the
threshold sensitivity for frequencies within one octave. This evidence suggests that mammalian visual systems

* employ a set of band-pass channels with a band-width of about one octave. Such a set of channels would
carry information from different resolutions in the image. These studies, and physiological experiments
supporting the concept of parallel spatial frequency analysis, are reviewed in [61 and [231.

1.2 The Structural Description of Shape Based on the DOLP Transform

The DOLP transform provides the basis for a representation in which two-dimensional gray scale shape is
described by a tree of symbols [10]. A description in this representation contains a small number of symbols
at the root. These symbols describe the global (or low-frequency) structure of a shape. At lower levels, this
tree contains an increasingly larger numbers of symbols which represent more local events. Finding the
correspondence between symbols at one level in the tree constrains the possible set of correspondence$ at the
next higher resolution level.

The description is created by detecting local positive maxima and negative minima (peaks) in each band-
pass image of a DOLP transform. Local peaks in the DOLP three-space define locations and size, at which a
DOLP band-pass filter best fits a gray-scale pattern. These poirits are encoded as symbols which serve as
landmarks for matching the information in images. Peaks of the same sign which are in adjacent positions in
adjacent band-pass images are linked to form a tree. During the linking process, the largest peak along each
branch is detected. This largest peak serves as a landmark which marks the position and size of a gray-scale
form (or shape). The paths of the other peaks which are attached to such landmarks provide a further
description of the shape of the form, as well as a continuity with structural forms at other resolutions. Further
information is encoded by detecting and linking two-dimensional ridge points in each band-pass image and

.4 three-dimensional ridge points within the DOLP three-space.

1.3 A Fast DOLP Transform

A full DOLP transform of an image composed of N samples, produces K = Logs(N) band-pass images
composed of N samples each, and requires O(N2) multiplies and additions, where, S is a "Scale Factor" which
is discussed below. Two techniques can be used to reduce the computational complexity of the DOLP
transform: "resampling" and "cascaded convolution with expansion".

Resampling is based on the fact that the filters used in a DOLP transform are scaled copies of a band-

limited filter. As the filter's impulse response becomes larger in the space domain, its upper cutoff frequency

decreases, and thus its output can be resamplcd with coarser spacing without loss of information. The
exponential growth in the number of filter coefficients which results from the exponential scaling of size is
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offset by an exponential growth in distance between points at which the convolution is computed. The result
is that each band-pass image may be computed with the same number of multiplications and additions.

Resampling each band-pass image also reduces the total number of points in the l)Ol.P space from

N Logs(N) samples to 3N samples.

Cascaded convolution exploits the fact that die convolution of a Gaussian function with itself produces a

Gaussian scaled larger in size by N/2. This method also employs an operation, referred to as "expansion", in
which the coefficients of a filter are mapped into a larger sample grid, thereby expanding the size of the filter.

This operation can be used without introducing distortion under certain conditions when the filter is band-

limited, and is to be convolved with a band-limited signal.

1.4 Organization of this Paper

Section 2 defines the DOLP transform and shows that its computation requires O(N 2) multiplies and

O(N Log(N)) storage locations. Each of the two fast computation techniqucs are described and their

complexity is analyzed in section 3. A fast algorithm based on both of these techniques is then dcscribed and

shown to require O(N) multiplies and O(N) Storage locations. An example is then presented of the band-pass

images that result from this fast algorithm in section 4.

2 The DOLP Transform

This section defines the DOLP transform and shows that its computation requires O(N 2) multiplies and

O(N Log(N)) storage locations. This is followed by a description of each of the two fast computation

techniques and an analysis of the computational complexity of the algorithms based on each technique. A

fast algorithm based on both of these techniques is then described and shown to require O(N) multiplies and

O(N) Storage locations.

2.1 The DOLP Transform Definition

The DOLP transform expands an N x N image signal p(x.y) into Logs(N) band-pass images ,k(fy). Each

band-pass image is equivalent to a convolution 2 of the image p(xy) with a band-pass impulse response,
b/zy).

k4.y) = * b/xzy) (1)

The DOLP transform is illustrated in the data flow graph shown in figure 1.

For k = 0. the band-pass filter is formed by subtracting a circularly symmetric low-pass filter g.(x.y) from a
unit sample positioned over the center coefficient at the point (0,0).

b*(xy) = S(x,y) - g.(xy) (2)

'Mhe lilters described in this paper are all non-recursive finite impulse response (FIR) filters. Convolutions are computed for each
sampl point in the image: when the filter coefficients extends beyond the todge of the image, a default border value (typically 0 ) is
supplied in place of the image value.

!1
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o 0 0

0 0 0
0 0 0
o 0o

Figure 1: The Difference of Low-Pass (DOLP) Transform

This data flow graph illustrates the computational process for a DOLP transform. The
transform produces Logs(N) band-pass images. Each band-pass image is produced by
convolving the image with a band-pass impulse response (filter) which is a size-scaled
copy. of a prototype filter. This prototype is formed from a difference of two size-scaled
copies of a low-pass filter.

The filter bV(xy) gives a high-pass image, S,(xy). This image is equivalent to the result produced by the
edge detection technique known as "unsharp masking" [20].

S.(Xy) = (x,y) * ( 8(x,y) - go(xy) ) (3)
= p(x,y) - (p(xy) * go(X~y))

For band-pass levels 1 - k < K the band-pass filter is formed as a difference of two size-scaled copies of the
low-pass filter.

b,/zy) = g,./x.y) - g/zy) (4)

Each low-pass filter, gk(x,y) is a copy of the circularly symmetric low-pass filter go(xy) scaled larger in size
by a factor raised to the kth power. Thus for each k, the band-pass impulse response, bk(x.y), is a size scaled
copy of the band-pass impulse responsc, bkixy). This property is necessary for the configuration of peaks in
a DOLP transform of a shape to te invariant to the size of the shape [10].

The scale factor is an important parameter which affects several aspects of the DOLP transform. For a

i
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two-dimensional I)O.P transform, this scale factor, denoted S has a typical value of V'2. In the case of a
*" onc-dimcnsional D)OI.P transform, the scale factor is denoted S,. and has a typical value of 2. This scale

factor is discussed again at the end of this section.

For two-dimensional circularly symmetric filtcrs which are dcfined by sampling a continuous function, size
scaling can defined as increasing the density of sample points over a fixed domain of the function. In the

• Gaussian filter, this has the effect of increasing the standard deviation, a, relative to the image sample rate.

In principle the DOLP transform can be defined for any number of band-pass levels K. A convenient value

of K is

K = Log,(N)

where S is equal to the sample distance S1 for a one-dimensional DOLP transform, or the square of the
sample distance S2 for a two-dimensional DOLP transform.

S = S1  2

This value of K is the number of band-pass images that result if each band-pass image, S k' is resampled at
a sampling distance of Sk. With this resampling, the Kth image contains only one sample.

The DOLP transform is reversible. The original image may be recovered by adding all of the band-pass
images, plus a low-pass residue. This low pass residue, which has not been found to be useful for describing
the image, is obtained by convolving the lowest frequency (largest) low-pass filter, g/x,y) with the image.

K-1

p(x.y) = (p(x,y) * gjxy)) + E siy) (5)
k=O

Reversibility proves that no information is lost by the DOLP Transform.

Because convolution and subtraction are associative the DOLP transform may also be computed by
convolving the original image with an exponentially size-scaled set of low-pass filters and subtracting each
low-pass image from the next to form the set of band-pass images. This technique is illustrated in figure 2.
One of the fast computational techniques for a DOLP transform which are described below is based on the
idea of computing the convolutions of the image with progressively larger low-pass filters which are
implemented as a cascade of convolutions with small low-pass filters.

2.2 Discussion: The Scale Factor

The parameter S, used to determine the number of levels, is crucial to both the scaling of low-pass filters
and resampling of the band-pass and low-pass images. These two ideas are related when peaks and ridges
from the DOLP transform are to be used to describe the shape of a form so that it can matched independent

* of the size of the form. In such an application it is important that the density of samples be a fixed fraction of
the size of the band-pass impulse response. It is convenient to define a single variable, S = S2 = S1 to2 1
simplify the expression for K as well as for some of the analysis given below.

I
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Figure 2: The Difference Method for Computing
the Difference of Low-Pass (DOLP) Transform

Because convolution and subtraction are associative the DOLP transform may also be
computed by convolving the original image with an exponentially size-scaled set of
low-pass filters and subtracting each low-pass image from the next to form the set of

band-pass images. The data flow graph for this process shows the reversibility of the

DOLP transform. This approach is also the basis for a fast computation technique for

the DOLP transform called "Cascaded filtering with expansion". With this technique
the sequence of low-pass images are obtained by repeated convolution with a small

kernel filter.

Marr [141 argues that a value of S2 = 1.6 is "optimum" 3 for a difference of Gaussian band-pass filter. For
two-dimensional signals the value S2= V'2 has virtually the same effect while providing some additional
benefits.

3 Marr calls this value optimum in the sense that it simultaneously minimizes S 2 while maximiing the energy in the filter. A curve of
filter energy with respect to ratio of standard deviations exhibits a "knee" in the rcgion of 1.6. [14). For smaller ratios the energy of the
resulting filter falls rapidly, while for larger values it is nearly constant.
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The most important benefit of using $2= N/2 is that N/2 is thc smallest naturally occuring resample
distance on a two-dimensional cartesian grid. Thus by using S2 = .V2 we can resample each band-pass image
at a distance that is a constant fraction of the band-pass filter size. This yields a configuration of peaks and
ridges in a l)OL.P transform that is invariant to the size of a shape, except for cyclic distortions due to
sampling effects. Such descriptions of shapes can be matched independent of the size of the shape.

An additional benefit from using S2= '/2 comes from the Gaussian auto-convolution scaling property.
When a Gaussian function is convolved with itself the result is the Gaussian function scaled larger in size by
V/2. We will show below that this property can be used to greatly reduce the computational cost of a DOLP
transform,

2.3 Complexity of DOLP Transform

In this section we derive formulae for the memory requirements and computational costs of the DOLP
transform. A first step in obtaining these quantities is the calculation of the number of coefficients in each
filter. We do this for both the one and two-dimensional cases and then produce a general result that holds in
both cases.

Let Rk refer to the radius of the filter, and let Xk refer to the number of coefficients, for both the one and
two-dimensional cases. Also, let S, refer to the size scaling factor for the one-dimensional filters and S2 refer
to this factor for two-dimensional filters, as above.

In the one-dimensional case, the number of coefficients is specified by the radius of the filter.

Xk = 2 Rk + 1

The radii at each band-pass level k are related to the radius R. of the smallest level by

R = R sk

Thus the number of coefficients for the kth band-pass filter is

Xk = (X .- 1) S, + 1

Since X. > 1 we can simplify the mathematics by using the approximation:
X k = X. Sk

In the case of the two-dimensional filters for images, the low-pass filter, g.(x, y), is specified to be circularly
symmetric. If the coefficients are nonzero for all points (x. y) such that x + Y2 < R. then,

X0 - v R.

This approximation becomes more accurate as R. increases.

* The band-pass filters for levels I through K-i are specified to be size scaled copies of the level 0 filter.
Each filter is to be scaled larger in size by a factor of S2. I'lius R, is related to R. by
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As a result thc number of coefficients at level k is

X X 2k' k *X 2

If we dcfine the variable, S, such that S S 2- S , as before, then in both the onc-dimcnsional and
two-dimensional case,

Xk =X. Sk

This approximation becomes more accurate as k increases.

As described above, the DOLP cransform is defined to produce band-pass levels 0 through K-I, where K
is

K = Logs(N)

Since the DOLP transform produces K band-pass images of N samples each, the memory requirement M is

(6)
M = NK =NLog(N)

Thle number of multiplies for producing each band-pass image is proportional to the number of coefficients
in the filter for that level. The total number of multiplies for the convolutions, denoted C (for cost), is given
by:

C =N X.(1+1+ S +S 2 +.SK-1)

K-1

= XON (1 + E Sk)
k=O

S-1

Using our typical value S =2,

1 i+SK1 =2 K
s-1

and the cost becomes:

C=X.N2K = X 0 N2D2(

4 and thus

C XO N2 (7)
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DOLP Transform

ON2O(N2

II

Sampled

DOLP Transform with Expansion

O(N Log(N)) O(N Log(N))

Cascaded Convolution

with Expansion

and Resampling

O(N)

Figure 3:

4 Techniques for Reducing the Cost of a DOLP Transform

Two independent techniques can be used to reduce the computational cost of a

DOLP transform: Resampling and Cascaded Convolution with Expansion. These two

techniques can be combined to produce an algorithm which for computing a DOLP
transform in O(N) multiplies which requires O(N) storage cells.
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3 Fast Computation Techniques

Wc have developcd two indcpcndcnt techniques to reduce the computational cost of a l)0P Transform.
Fach of these techniques reduces the i:umber of multiplies and additions for an N sample I)0l.P transform
from O(N 2) multiplies to O(N l.og(N) ) multiplies and additions. Combined, these techniques allow the
DOLP transform to be computed with O(N) multiplies and O(N) additions.

The two techniques are:

Resampling: Computation of the band-pass images at resample points which are spaced at a fixed
fraction of the filter radius.

. Cascade Convolution with Expansion: Use of the autoconvolution scaling property of the
Gaussian low-pass filter and a remapping of the filter coefficients to obtain the impulse response
of a larger filter from a cascade of small filters.

These two techniques may be applied independently to reduce the computational cost of a DOLP transform,
as illustrated in figure 3. When combined, these two techniques provide an algorithm '-hich will compute a
DO[.P transform in O(N) multiplies with a storage requirement of O(N) cells. In the following sections we
describe algorithms for computing a DOLP transform based on each of these techniques separately. We then

,* describe the algorithm which employs both techniques.

This section begins with a discussion of resampling a cartesian two-dimensional signal at a distance of V/2.
A linear systems model for such resampling is presented. We then describe the Sampled DOLP transform,
and show that with v12 resampling, a DOLP transform can be computed with O(N Log(N)) multiplies and
that this DOLP transform can be stored in O(N) storage cells.

We then discuss the scaling property of the Gaussian filter, and show that a Gaussian impulse response of
size SVN2 can be formed by convolving a Gaussian filter of size S with itself. This technique is referred to as
cascaded convolution. A second scaling operation known as the expansion operator is then introduced. We
show that a combination of expansion and cascaded convolution can also be used to compute a DOLP
transform of an N sample image in O(N Log(N)) multiplies.

Finally, these two techniques are combined to produce an algorithm which will compute a DOLP
transform which requires O(N) samples in O(N) multiplies. This technique is eferred to as "Cascaded
Convolution with Expansion and Resampling.

4( 3.1 Resampling

The number of samples that is needed to represent a discrete signal is determined by the frequency content
of that signal. As Nyquist demonstrated, 1161, a signal which has been convolved with a filter which
attenuates the higher frequency components may be represented by a smaller number of samples. Very little
information is lost when a band-limitcd signal is rcsamplcd because the original samples may be recovered by
interpolation. In this section we describe the %/2 sampling operation and then present the algorithm for the
sampled DOLP transform.

I
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3.1.1 Sampling at V2

"~~ ~ (D ( D 0 E

Figure 4: Example of Sv--fp(x,y)} ( Circles)
and S.,,-{S,',{p(xy)}} (Squares)

Applied to a Cartesian Sample Grid ( Dots)

The smallest distance between sample points on a two-dimensional cartesian grid which is larger than 1 is
v/2, the distance between diagonally adjacent elements. A two-dimensional signal may be resampled at this
sample distance by removing every other diagonal, as illustrated by the circles in Figure 4. We refer to this
process as V72 sampling, denoted SV-{}. V/2 sampling reduces the number of sample points in a two-

dimensional signal by 1/2. A second application of %/2 'sampling will produce a two-dimensional signal
which has samples spaced at a distance of 2 on the original grid, as shown by the boxes in figure 4.

The points on the %/2 sample giid maybe detected by a simple test using the modulus function ( denoted
* here as "mod"). Sample points on the V2 grid are those points, (x,y) which satisfy the relationship

x mod 2 = y mod 2.

This is the sample function applied to level 2 of the sampled DOLP transform. A second application of
V/2 sampling produces a sample grid with a minimum distance of 2 between samples. These points are those
for which

xmod2=0 and ymod2=0

This is the sample grid for level 3 of the sampled DOLP transform.

0 In general, each level k, for 2 < k < K-i, of the sampled DOLP transform will have a sample grid

produced by k-i applications of N/2 sampling. Those levels for which k is even will have sample points
defined by

x mQd 2 (k-l )/2 = y mod 2(k l )/2

* Those levels for which k is odd will have points which are given by

x Mod 2(k-1)12 = 0



and
y mod 2(k-)/2 = 0

Such sampling may be done for any value S which is a distance between points on the original sample grid.
For example. if we select points that are separated by a distance in the x dimension of 2 and in the y
dimension of_1, then our rcsamplc distance is S2 ==ei Sd 2 2- 2+ 1 = V'5". If a two-dimensional scale factor other
than S2 = %/2 is used, the valuc S = S must be substituted for the 2 in the above expressions. In this case
the size of the low-pass filters should be scaled by this same factor if the 1)1-P transform is to be used to

produce a description of shape that can be matched at any size.

3.1.2 Linear Systems Model for Resampling

lV
U

Figure 5: Nyquist Boundaries for Successive applications of V/2 ReSampling

The effects of resampling are best described in the spatial frequency domain. Let us describe the transfer
function ( Discrete Time Fourier Transform ) of a two dimensional function, h(x,y) as [17]

4 00 00

H(u,v) = , E h(x,y)ejuxevY (8)
U-- 0 0 V-00

The continuous variables u and v are referred to as the spatial frequency variables. Figure 5 shows the the
range of unique spatial frequency components in the (u, v) plane that is generated by the transfer function of
a two-dimensional signal. A, two-dimensional function sampled on a cartesian grid has a transfer function
which is unique within the square region of the (u, v) plane bounded by ( ±v, ±w ). The boundaries of this

region are referred to as the Nyquist boundaries. The resampling operation S., -{.} generates a new Nyquist
boundary, shown by the diamond shaped region in Figure 5. The V2 resaimpling operation has the effect of
"folding" or aliasing any signal energy outside this new Nyquist boundary. This folded signal energy is added
to the signal, and appears as energy at a lower frequency. Such a distortion is not reversible and will
introduce errors when used with techniques which are based on detecting peaks and ridges.
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Aliasing is minimized by filtering the two-dimensional sequence so that there is very little signal energy
outside the Nyquist boundary when the signal is rcsampled.4 This minimizes the reflected signal energy that
rcsults in aliasing. Mathematically. the operation is modellcd as first convolving the signal with a band-
limited filter, and then selecting only the subset of points at which the filter signal is rcsamplcd. For
implementation on a serial processor, the computational cost may be rcduced by only evaluating the
convolution expression at those points where the filter is centered over the resample points. This "rcsampled

* convolution" is illustrated by the function S.r-{} placed in boxes adjacent to the convolution boxes in Figure
6.

3.1.3 Complexity of the Sampled DOLP Transform

A convolution may be expressed as a sequence of inner products of the filter coefficients with
neighborhoods of the signal. By only computing these inner products for the instances where the filter is
centered over resampled points, it is possible to reduce the computational complexity of a DOLP transform to
O(N Log(N) ). In such a Sampled I)OI.P transform, the distance between rcsample points increasc by the
same scale factor as the band-pass filters. The computational complexity and memory requirements for the
Sampled DOLP Transform may be evaluated by considering the steps in the algorithm. In this section we
present such an analysis for any value of S.

0

The band-pass signals. S.(x,y) and 5(x,y), are computed as described for the DOLP transform, requiring
X.N and S X0 N multiplies respectively. %2(x,y) is computed only for sample points in p(x,y) on alternate
diagonals. 'lhe convolution at level 2 is with a filter with X. S2 coefficients. However, the convolution is only
evaluated at the N/S sample points on alternate diagonals. Thus the cost is S X, N multiplies, as it was with
level 1. At level 3, the band-pass impulse response is computed for sample points spaced at a distance of S2

There are N/S 2 such points and the filter has X. S3, so the cost is S X0 N multiplies.

In general at each level k , for 2 < k < K-i, the band-pass filter has X. Sk coefficients, and the
convolution is computed at N/S(k 1) sample points, for a cost of X. S N multiplies and additions at each
band-pass level. Since there are K Logs(N) band-pass levels, the total cost is

C = Xe N ( S ( Logs(N) - 1) +1 ) multiplies and additions (9)

Band-pass levels 0 and 1 each have N samples. For levels 2 through K-1 the number of memory cells
required drops by a factor of S for each level.

M =N (I+ 1+1/S+1/S2+ 1/ s3 +...)

K-1

=N (1 + 1

k= O S

41t is impossible to filter a sequence with a finite duration filter so that a frequency region of any finite size is identically zero [181.
However. asignal can be filtered so that there is an arbitrarily small response to a range of frequencies.

0
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b0ocON

- b1(z, ,

b4(c ) }Sf 3 .(X,

o 0 0

o 0 0

0 o 0

Figure 6: Data Flow Graph for Algorithm for Computing Resampled DOLP Transform

The boxes marked with SV2'[k][.] following each convolution indicate that the

convolution is computed only for resample points specified by V2 resampling at level
k. ( See text)

1
= N (+ -) (10)

For our typical value ofS = 2,

M = N(1 + 1 + 1/2 + 1/4+ 1/8+...)
=3N

I



K 14

3.2 Cascaded Convolution with Expansion

Much of the cost of a I)OIP transform results from the large number of coefficients in tie filters for larger
values of k. Rcsampling compensates for the exponential increase in the filter size by an exponential incrcase

in the space between sample points. A second technique for reducing the complexity of a I)01.P transform to
O(N Log N) multiplies is referred to as "cascaded convolution with expansion". This method exploits two
mathematical properties: (1) the size-scalcd replication of the Gaussian functional form as the result of the

convolution of a Gaussian function with itself. (2) a scaling operation that is based on remapping the
coefficients of a filter into a new sample grid, leaving zero or undefined samples between the samples of the
remapped filer.

In the following sections we first discuss the two-dimensional circularly symmetric Gaussian filter, and its
properties under convolution. We then describe the expansion operator and the algorithm for -cascaded

convolution with expansion, together with an analysis of its complexity.

3.2.1 The Two-Dimensional Circularly Symmetric Gaussian Filter

In cascaded convolution, an impulse response covering a large support is obtained by repeatedly
convolving the signal with copies of an impulse response over a smaller support. This algorithm will only
produce size scaled copies of the low-pass impulse response if Gaussian low-pass filters are used. This may be
shown by the Gaussian autoconvolution scaling property, described below.

The Gaussian function is most commonly known in its one-dimensional form

2 2
g(t) A 1_e-(t-) /2

where 1L is rcfered to as the mean and a as the standard deviation.

The term 1/a V2v scales the Gaussian function so that it has unit area.

A discrete two-dimensional Gaussian filter may be obtained by assuming a zero mean and applying the

* substitution

R2

a =-, and
2a

* The coefficients are then obtained by sampling the continuous function at the points given by the discrete

variables x and y where t2 = x2 + y2 < R2.

Implicit in this filter is multiplication by a uniform circular window (or aperture or support), the disk

0 cR(x.y) I 1 for x2 +y 2 <R 2

1 0 otherwise

0t
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To control the filter gain, tie filter coefficients are normalized so that they sum to 1.0. iis is done by
summing the coefflcicnts and then dividing each coefficient by the sum.

Thus the normalized two-dimensional Gaussian low-pass filter defined over a circular support is given by:

g(x,y) = (/A) cR(x,y) e -a(x 2+y2 /R2

Where A is a gain factor given by

A =C(xy) e- R2

Ixc<R Iyl<R
The circularly symmetric function cR(x,y) has a transfer function [191

CR(UV) = 2vRJI(R VU7 -+ ')

where J(') is the first order Bessel function.

The Ghussian filter g(xy) has a transfer function which is a Gaussian function convolved with the transfer
function of its aperture (or support) [19].

G.(u,v) = ACR(tav) * R e (u2 +v2 /4

A R-Vi
An experimental procedure has shown that the parameters R =4.0 and a = 4.0 work quite well for

cascaded convolution with expansion [101. With these parameters., the transfer function of the impulse
response has its first zero crossing .in a circle of radius approximately equal to vT. This gives a filter with a
pass-band and transition region which just fits within the Nyquist boundary.

The Gaussian is the only two-dimensional function which is both circularly symmetric and separable into
one-dimensional components. If the Gaussian kernel is multiplied by a square support rather than a circular
disc, then the entire impulse response can be separated into a cascade of one-dimensional components. In
this case, the correlation operation can be implemented with significantly fewer multiplies by replacing the
convolution with a (2R + 1) x (2R + 1) circular filter by two convolutions with 2R + 1 point one-dimensional
filters ( one for each dimension). This requires a total of only 4R+2 multiplications for each picture point
instead of 4R 2 +4R+1 multiplications [171. The square support degrades the circular symmetry of the
function. The result is some additional aliassing along the axes when the filtered sequence is resampled.

3.2.2 Cascaded Convolution

It can be easily shown that a Gaussian function convolved with itself yields a Gaussian function whose
standard deviation is V'2 larger than the original function. For example, in one dimension, the convolution
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t 2/2a2 G e2/2a2

"/ 2, * /2 ,

may also be expressed as the product of Fourier transforms
240 2/ 2 - 2&j2//2 2 -a2 w2

""'The inverse Fourier transform of this product is

~1 _22

I-e-t 2/A4u

Returning to standard form requires the substitution

a 2= 2a 2 ora Ni a.

Thus the standard deviation, and hence the function width, have been expanded by a factor of v/2. Note
also that autoconvolution preserves the unit area normalization; the amplitude has been multiplied by a factor
of 1/V2. The discrete Gaussian filter is of finite extent, and thus is not an exact Gaussian. For this reason
the Gaussian scaling property only holds as an approximation for the discrete Gaussian filter.

Cascaded convolution provides an inexpensive method to obtain the convolution of an image with gl(x,y).
That is, low-pass image I is obtained from low-pass image 0 by a second convolution with go(x,y), yielding the
effective filter,

g1x.y) = g.(x~y) * g.(xy)

However, low-pass image 2 then requires two additional convolutions with g(xy) and low-pass image 3
requires four more such convolutions with g,(xy). This exponential growth may be averted by resampling
each low-pass image by V/2 before the next convolution, or by expanding the g.(xy) onto a larger sample

* grid with the V'2 expansion operator.

3.2.3 The Expansion Operator

In addition to cascaded convolution we also employ a technique refered to as "expansion" in the algorithm
described below. Expansion is possible because we are using low-pass filters that are designed with a high-
frequency stop band. These filters attenuate the spurious high-frequency signals created by the "expansion"
operation.

The expjansion operation is a spatial remapping of the samples of a filter so that the distance between
samples is altered. This remapping does not affect the number of samples in a filter or the values of these
samples. Algorithm are described below in which expansion is used as a method of scaling the impulse
response larger in size by a factor of V/2. Expansion by V2 is necessary in order to convolve a filter with an
image which has been resampled to a V2 sample grid, as is required when cascaded convolution is used with
V2 resampling. However, it is also possible to use this expansion to size-scale a filter which is to be
convolved with a conventional cartesian grid. The only restriction is that the high frequency energy generated
by expansion must be attenuated by other filters in the cascade.
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11c expansion operation may bc modleled as a spatial scaling fllowed by a rcsampling. A simpler analysis

can be perfored by considering the spacing between coefficients. Both analysis produce the same result:
i ' The transfer function of the filter is scaled smaller in frequency by the expansion. and copies of the transfer

function appear reflected over a new Nyquist boundary imposed by the space between samples. Thc
conditions under which expansion can bc used without distorting the image are always the same. The
composite cascade filter must have a very high attenuation everywhere outside of the new Nyquist boundary
of the sample grid onto which the filter coefficients are mapped.

Let us define (x,y) as points in the cartesian grid in which a filter is defined, and (xe.Y,) as the
corresponding points in a V'2 grid onto which the filter is remapped. A single application of the
v/2 expansion operation maps each row from a filter on a cartesian sample grid into every other diagonal of
the V2 grid. This mapping takes each coefficient from point (xy) of a filter g(x,y) and places it at point
(x-yx + y) of a filter ge(XeYe). Points of ge(xe,ye) which receive no coefficient under this mapping are declared
to be undefined or zero.

Let us define this mapping as the function Er {2}. Since

Xe =x-y

* Ye = x + y

we obtain

x +y
x = e e

2

and

-x +y
y e=

Thus this function may be defined by

Er2'{g(x,y)} ge(Xeye) = g((-xe+Ye)/2, (xc+y)/2) For xe Mod 2 = ye Mod 2

1undefined otherwise

This mapping is illustrated by Figure 7. This figure shows the correspondence between points in the
mapping. The dashes ("-") indicate the points which are not defined in the new filter.

The algorithm for cascaded filtering with expansion employs recursive application of the N/2" expansion
operation. Each expansion enlarges the smallest distance between samples by \/2 and alternates the
direction of that smallest distance between ±450 and 00,900. For this, we can define a more general
expansion operator: E/r-k{.}. This more general operator expands the filter to the same grid as an image
which has been \/2 sampled k times.

Each application of the N/2" expansion operation rotates the filter by 45*. For a circularly symmetric filter

this rotation has no effect and we can express an expansion of V/2 k as k recursive applications of the
V2 expansion.
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.(,1) 0)

.(-1,0) -R1

Figure 7: Example of mapping iven by E ,'f}

The general /2expansion operation, E~r2kfg(x~y)}, may be expressed informally as follows. For each
point (x~y) at which the filter gk-1 (X'Y) is defined, define a new point in gk(x,y) at (x-y, x +y) and copy the
value from g,_,(x,y) into the point.

This mapping may be expressed more formally as follows: When k is odd, the filter is mapped onto a grid
whose axes are ±45 , and whose smallest distance between samples is 2k12. The points on this grid are those at
which

x~ eMod 2 (k +1)/2~ = e Mod 2(k+ 1)/2 -0.

For even k. the expanded filter will be mapped onto a grid whose axes are at 00 and 900. The distance
between samples along these axes will also be 2k/2. The mapping E'r2k~g(x,y)} may be defined as:

For even k:

EV2- kjg(x,y)} g ,(xye) g( eL, 'eL) for (x0 mod 2) =0 and (ymod 2) = 0
ee { 2k/2 2k/2 e

undefined otherwise

For odd k:

4 E~j~g~xy)} g~(~.y~= (gXe + Y~ Xe + Ye ormd 2(k+1)12 -yMod 2(k+ 1)/2

2( + 1)/2 2(k + 1)/2 e

undefined Otherwise
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3.2.4 Frequency Domain Effects of N/2 Expansion

The I/2 expansion operator has a well defined effect on the transfer function of its argument. As with
V2 sampling, a new Nyquist boundary is created which is a 450 rotation and a V/2" shrinking of the old
boundary. Inside this new Nyquist boundary is a copy of the old transfer function scaled smallcr in size by a
factor of N/2. Outside this new Nyquist boundary is a reflection of the scaled transfcr function. iMis is
illustratd by Figure 8 below, which shows the 3 dB contour of a low-pass filtcr bcforc and aftcr the expansion
operation. Figures 9 and 10 show plots of the transfer functions of the Gaussian low-pass filter (R =4, a =4),
before and after the expansion operation. Note the four lobes in the corners of Figure 10. These are the
reflections of the pass region. If these were to show up in the composite filter they could cause a large
stop-band response, which would alter the locations of peaks and ridges in the resulting band-pass images.

v /3dB Contour

V

Figure 8: Effect on Transfer Function of EV2" Expansion
Operator

b

E,-{.} scales the size of the transfer function by v2 so that it approximates the larger Gaussian filter,
glx.y) within the new smaller Nyquist boundary. That is

Y[E,2-jgo(xy)}} = 7{gt(x,y)}
within
V _ u+v I <  The new Nyquist boundary.

Where Y[} is the transfer function [171.

For the parameter values R=4, a=4 the pass-band is well within this new Nyquist boundary, and the
reflection of the pass-band falls into the stop-band of the previous filter. That is, outside of the new Nyquist
boundary,

I
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02

Figure 9: Transfer Function Go(u,v) for R = 4.0, a = 4.0 Before V/2 Expansion

Ylgo(xy) * go(x,y)}

, will be very small (i.e. less than -60 dB where the reflected nodes are present, for R=4, a=4) and thus the
product

1{Ej-g.(x y)}} I{g.(x,y) *go(x,y)}

will also be very small outside the new Nyquist boundary. As a result, the impulse response at low-pass level
2 is approximated by

S g2(x,y) = go(x,y) * go(x,y) * Evt'{go(x,y)}

Figure 11 is a plot of the transfer function of the level 2 low-pass filter. As can be seen the response in the
comers is so small that it does not register in this plot. The filter was constructed by convolving go(x,y) with
itself ( a = 4, R = 4), and then convolving an expanded version go(xy) with this composite filter. Thus this is
the same impulse response which r-ould occur at low-pass level 2 of a DOLP transform computed using
cascaded convolution with expansion. A logarithmic plot of the amplitude of G2(u,v) is shown in Figure 12.
This plot spans 120 db in amplitude with the vertical marked on the left at intervals of 10 db. The response in
the corner regions are attenuated more than 100 dB from the peak.
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Figure 10: Transfer Function G.(uv) of filter After x/2 Expansion

Notice that the pass region at the center of the Nyquist plane has been scaled smaller
by V'2. The corners of the Nyquist plane contain copies of the size-scaled pass region.
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Figure It: Filter G 2(u,v) for R =4.0, a =4.0

g2(x,y) =g.(x,y) *g.(x,y) *E,(2-{g 0 (x,y)}
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Figure 12: Plot of 20 Lg 0 G( )
Scale (shown at lcft) spans -120 dB.
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3.2.5 Complexity Analysis of Cascaded Convolution with Expansion

"Ihc algorithm for cascaded convolution with expansion is illustrated by the flow graph in Figure 13. Its
computational complexity may be seen by an analysis of the steps in the algorithm.

* .Low-pass image 0, L,(x.y) ,is produced from the original image, p(x.y) ,by convolution with g,(x.y).

: L.(xy) = p(x.y) * g,(x.y)

Band-pass level 0. S,(xy), is then produced by subtracting L,(x.y) from p(x.y).

S.(x.y) = P'x.y) - L,(Xy)

The convolution requires N X0 multiplies and additions, and the subtraction requires an additional N
* additions.

Low-pass level 1 is then formed by convolving low-pass level 0 with the low-pass filter.

L ,(x.y) = L,x.y) * g0(x.y)

Band-pass level 1 is then formed by subtracting low-pass level 1 from low-pass level 0.

' (x.y) = L,(x.y) - L (xy)

As with band-pass level 0, the convolution requires N X, multiplies and additions while the subtraction
requires an additional N additions.

Low-pass level 2 is then formed by convolving low-pass level 1 with an expanded version of the low-pass
filter. The expansion operation scales the filter larger by a factor of V2 without increasing the number of
coefficients.

L2(x.y) = L1(xy) * EV2{g.(xy)}

i* Band-pass level 2 is then formed by subtracting low-pass level 2 from low-pass level 1.

S2(x'y) = L1 (X.y) - L2(y'y)

Since expansion does not alter the number of coefficients this convolution also requires N X. multiplies and
additions and the subtraction requires an additional N additions.

Low-pass level 3 is then formed by convolving low-pass level 2 with a twice expanded version of the
low-pass filter. Two applications of the expansion operation scales the filter larger by a factor of 2 leaving the
original filter coefficients on a grid with every other row and column set to zero.

L3(xy) = L2(xy) * E r22{g.(x~y)}

Band-pass level 3 is then formed by subtracting low-pass level 3 from low-pass level 2.

SX' = L2/zy) - L3(yzy)
Since expansion does not alter the number of coefficients this convolution also requires N X. multiplies and
additions and the subtraction requires an additional N additions.

In a similar manner, each band-pass image k is produced by first creating low-pass image k by convolving
low-pass image k-1 with a copy of the low-pass filter which has been expanded k-1 times.

4.
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00 0

0o 0

00 0

Figure 13: Data Flow Graph for Cascaded Convolution with Expansion

This fast algorithm uses cascaded convolution and V2 expansion to compute a

DOLP transform in O(N Log(N)) multiplies
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1- k(X.y) = k- t(x.y) Evj(k-1){g,(x.y)}
Low-pass image k is then subtracted from low-pass image k-1 to produce band-pass image k.

Sk(x'Y) = Lklt(x,y) - Lk(Xy)
Since expansion does not alter the number of coefficients each convolution requires N X. multiplies and
additions and each subtraction requires an additional N additions.

Since there are K = Logs(N) band-pass images, the total cost is

C = X. N Logs(N) multiplies and
(X, + 1) N Logs(N) additions.

Since cascaded convolution does not involve resampling the any of the images, the memory costs for
computing a DOLP transform in this manner are not affected. As with equation (6), the memory
requirements are

M = N Logs(N) memory cells

3.3 Resampling and Cascaded Convolution with Expansion

The computational cost and memory requirements for a DOLP transform can be reduced substantially by
resampling each low-pass image before each cascaded convolution. The savings in computational complexity
result because there resampling reduces the number of points at which the convolution is evaluated for each
new level. while cascaded convolution holds the number of filter coefficients constant. In this fast algorithm
recursive expansion of the low-pass filter is not needed. In the odd number levels, expansion is given

*implicitly by the resampling. In the even numbered levels, I single N/2 expansion is needed to place the filter
coefficients on the same sample grid as the data.

3.3.1 The Algorithm and Complexity Analysis

The algorithm for rcsampling and cascaded convolution with expansion is illustrated in the data flow graph
shown in Figure 14. This algorithm runs as follows. Low-pass and band-pass levels 0 and 1 are computed as
described above for cascaded convolution with expansion. That is, low-pass level 0 is constructed by
convolving the picture with the low-pass filter g.(xy).

L.(X.y) = ,(X4y) * g,(Xy)

Band-pass level 0, S.(x.y), is then produced by subtracting L.(xy) from p(x,y).

S,(x.y) = p(Xy) - L.(Xy)

* Thus the band-pass impulse response at level 0 is

bo(x,y) = 8(xy) - go(X,y)

Low-pass level 1 is then formed by convolving low-pass level 0 with the low-pass filter.

* Z~L1 y) = L.(x,y) * g.(Xy)

Band-pass level 1 is then formed by subtracting low-pass level 1 from low-pass level 0.

0
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Figure 14: Data Flow Graph for Composite Fast Algorithm Using
Rcsampling and Cascaded Convolution with Expansion
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=,(x.y) L,(Xy) - L1(x~y)

* The impulse response at band-pass level 1 is

blx.y) L_- -. (x.y)-( g.(x.y) * g*(xy))
Both band-pass level 0 and band-pass level I require X, N multiplies and (X. + 1) N additions. They each

-~ - Produce N band-pass samples.

* For each band-pass level 2 through K-I. the low-pass inagc k-1 is first resampled at 'V2 by the operation
Sv-{.}. This resampling reduces the number of sample points by a factor of 2 from the low-pass image at
k-l. For odd levels, resampling leaves the data on a cartesian grid. and thus no expansion is necessary. T'he
low-pass image or level k is thus formed by simply convolving the filter with the low-pass image from level
k-I.

Lxk(X-Y) = Lk't(x'Y) * g,(x.y)

On even'levels, resampling places the data onto a V'2"sample grid. To convolve an image on a V'2 sample
grid; the low-pass filter coefficients must be remapped to a N/2 grid by the expansion operation.

Lk(xzy) = Lk_ I(xy) * Evi{ f.(xy)}
In both cases the band-pass image is then formed by subtracting the result of the convolution from the
previous low-pass image.

a!k(x'y) = L-k (Xy) - Lk(X.y)

For S2 = N/2, each resampling reduces the number of sample points by 2, and thus reduces the number of
multiplies and additions by a factor of 2. Thus the total number of multiplies and additions is given by

C =X, N(I + 14 1/2 + 1/4 + 1/8 +...)
= 3 N X0 multiplies

and
3 N ( X. + 1 ) additions.

As with the resampling algorithm described above, the total number of memory cells required is

M=3N

o 3.3.2 The Impulse Responses for Cascaded Convolution with Expansion and Resampling

In the cascaded filtering algorithms described above, the band-pass images are formed by subtracting
adjacent low-pass images. The band-pass impulse responses are thus equal to a difference of low-pass impulse
responses which are produced by cascaded filtering. Because a finite impulse response Gaussian filter is only

0 an approximation of the Gaussian function, the low-pass impulse responses for levels I through K are only
approximations of scaled copies of the level 0 low-pass impulse response.

The low-pass impulse response at level 1 is

g/xy) = g.(x.y) * g.(Xy)

Thus at low-pass level 1, a V'2 scaling in size of g,(x.y) is approximated by the simple cascaded convolution
of g.(x,y).
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Low-pass level 2 is formed by rcsampling low-pass level 1 at a sample distance of %i2 and then convolving
with an expanded version of dhe low-pass filter g.(x,y).

g2(x.y) = E( {g.(x'y)} * S V2 {g.(x,y) * g.(x.y)}

The low-pass image from level 2 is then resampled at a distance of N/2 for a second time, which places it on
a sample grid with a unit distance of 2. "l'his low pass image is then convolved with the low pass filter g.(x,y).
The resampling provides a rcmapping of the filter coefficients and so no expansion is needed at this level.
Thus the size scaling of g. by a factor of 2v2 is approximated by

glxy) = go(x.y) *Svr {EVjE{g.(x.y)} *SV,j{g.(xy) * g.(x.y)}}

In general, the impulse response at low-pass level k, from k=2 to K-1 is given by the following recursive

relationships depending on whether k is even or odd:

For even k:
gk(xy) = E...r,{g.(x.y)} *S.Vrj{gk.xy)}
And for odd k:
gk(x.y) = go(x'y) * SV {gk(.XY)}

3.3.3 The Size of the Impulse Responses

Size scaling the kernel low-pass impulse response by resampling the continuous Gaussian function at a
denser sample rate would yield a sequence of radii Rk given by

Rk = R,2(k/ 2)

The sequence of radii is somewhat different with cascaded filtering. In this case, the expansion operation
maps the furthest coefficient, at say. (R,0), to a new point at (R,R). This gives an increase in radius of V'2.
Convolution with the composite low pass filter then adds this new size to that of the composite filter.

That is, at level 0 the radius is R.. At level 1 the composite filter is the auto-convolution of g,(x,y), and its
radius is thus 2R,-1. The level 2 composite filter is formed by convolving the level I composite filter with an
VN2 expanded version of g.. The radius of the level 2 composite filter is thus 2R, + V/2 R, - 2. A general
formula for the radius at any level k > 0 is

(k-1)

Rk = RO - k + R*E (V2)n-'

n=O

4 An Example of the DOLP Transform

Figure 15 shows a resampled DOLP transform of an image of a teapot that was produced using the fast
* computation techniques. In this Figure the image at the lower right is the high frequency image, S,(xy).

The upper left corner shows the level 1 band-pass image, Sl(x.y), while the upper right hand corner contains
the level 2 band-pass image, %2(xy). Underneath the level 1 Band-pass image are levels 3 and 4, then 5 and 6,
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Figure 15: The Resampled DOLP Transform of a Teapot Image
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Figure 16: Levels 5 Though 13 of the Resampled DOLP Transform of a Teapot Image
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etc. Figure 16 shows an enlarged view of band-pass levels 5 through 13. This enlargement illustrates the
unique peaks in the low frequency images that occur for each gray-scalc form.

These images were formed using both resampling and cascaded convolution with expansion. Feach band-
pass impulse response is composed of a difference of Gaussian low-pass filters with a ratio of scales of S2 =
V2. 'Ibese band-pass images were computed by forming low-pass images with the cascaded convolution
with expansion technique and then subtracting to form the Band-pass images. The use of V2 resampling is
apparent from the reduction in size for each image from level 3 to 13. In the even numbered images, on the
right of each pair, the image is actually on a V'2 sample grid. To display these %/2 images, each pixel was
printed twice, creating the interlocking brick texture evident in Figure 16.

5 Summary and Conclusions

This paper has defined the Difference of Low-Pass ( DOLP ) transform. The DOLP transform is a
reversible transform that separates a signal into a set of band-pass components. The DOLP transform serves
as the basis for a representation for two-dimensional shape that is described in a companion paper [Ill. The
DOLP transform is shown to require O(N 2) multiplies and produce O(N Log(N)) samples.

The DOLP transform is interesting because shapes ( and signals ) which are represented by encoding peaks

and ridges ( or zero-crossings ) in the DOLP transform can be matched efficiently despite changes in size,
orientation, or position, and despite corruption by image noise. One of the biggest obstacles to use of the
DOLP transform for describing and matching shapes in images was the apparent computational and memory
costs. In this paper we have described two independent techniques which may be used to reduce the
computational complexity and storage costs of a DOLP transform. The technique of resampling is shown to
reduce the computational complexity of a DOLP transform to O(N Log(N)) multiplies and the storage
requirements to O(N) samples. The technique of cascaded convolution with expansion is also shown to
reduce the computational cost of a DOLP transform to O(N Log(N)) multiplies, but does not affect the
storage requirements. It is then shown that these .two techniques may be combined to produce a DOLP
transform in O(N) multiplies that requires O(N) samples.

Cascaded convolution has been investigated recently as a technique for efficiently realizing large digital
FIR filters [11. In particular, Burt [5] has employed a cascaded convolution of a kernel which is an
approximation to a Gaussian to obtain larger "Gaussian-like" filters. Such a.process requires a doubling in
the number of convolutions with the fixed size kernel for each increase of N/2 in filter size. Our use of the
expansion function, however, permits a composite Gaussian filter of size S \/2 to be formed from a composite
Gaussian of size S by one convolution of the kernel filter. This technique is general and should be of benefit
whenever low-pass kernel filters are cascaded to form larger impulse responses.

The scale factor of V 2 for filter size results naturally from both fast techniques. In resampling, it occurs
because it is the smallest distance larger than one between samples on a cartesian grid. It is the smallest rate at
which a two-dimensional discrete sequence can be resampled without interpolation. The factor V2 also
occurs with cascaded filtering. It is the increase in. size scale provided by convolving a Gaussian low-pass filter
with itself. This happy coincidence indicates that V/2 is a very convenient value for the scale factor for a
DOLP transform that is to be used to represent images for matching, And, indeed, this factor turns out to
work quite well [101 for representation and matching With the DOLP transform.
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The most important result of this work is that it makes available the representational power of the l)OLP
transform without a prohibitive cost in computation. For a 256 by 256 image. if the separable form of the

Gaussian filter is used. the total cost of computation for the 16 band-pass images is

C = 3 x 18 x 2562 = 3.538 million multiplies

compared to

C = 18 x 2564 = 77,309.41133 million multiplies

without the techniques of cascaded convolution with expansion and resampling. Thus, the calculation of a
DOLP transform in under a second is made possible by implementing these fast techniques on commercially
available high-speed vector processing peripherals.

I

.4
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